Меню

В пять горшочков стоящих в ряд кролик налил три

В пять горшочков стоящих в ряд кролик налил три

В пять горшочков, стоящих в ряд, Кролик налил три килограмма мёда (не обязательно в каждый и не обязательно поровну). Винни-Пух может взять любые два горшочка, стоящие рядом. Какое наибольшее количество мёда сможет гарантированно съесть Винни-Пух?

Решение

Оценка. Пусть Винни-Пух не сможет взять хотя бы килограмм мёда. Значит, в любой паре горшочков, стоящих рядом, меньше килограмма мёда. Это справедливо как для двух крайних горшочков справа, так и для двух крайних горшочков слева. Но тогда в среднем горшочке – больше килограмма мёда (иначе всего мёда было бы меньше, чем 3 кг). Противоречие. Таким образом, Винни-Пух всегда сможет взять не меньше килограмма мёда.
Пример. Если в первом, третьем и пятом горшочке – по 1 кг мёда, а второй и четвёртый горшочки пустые, то больше килограмма мёда Винни-Пух съесть не сможет.

Ответ

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 11 (2013 год)
Дата 2013-03-17
класс
1
Класс 6 класс
задача
Номер 6.7

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Среди любых десяти из шестидесяти ребят найдутся трое одноклассников. Докажите, что среди всех них найдутся 15 одноклассников.

Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.

Решение

1000 яблок разложены в несколько корзин. Можно убирать корзины и вынимать яблоки из корзин. Докажите, что можно добиться того, чтобы во всех корзинах стало поровну яблок и общее число оставшихся яблок было не меньше 100.

Тема: [ ]
Решение

В автобусе едут 20 пассажиров, и у каждого много монет по 10, 15 и 20 копеек. Каждый должен заплатить 5 копеек.
Могут ли они сделать это, использовав (в том числе и для обмена между собой) а) 24 монеты; б) 25 монет?

По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 392]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?

Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать семь таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?

Карлсон открыл школу, и 1 сентября во всех трёх первых классах было по три урока: Курощение, Низведение и Дуракаваляние. Один и тот же предмет в двух классах одновременно идти не может. Курощение в 1Б было первым уроком. Учитель Дуракаваляния похвалил учеников 1Б: «У вас получается еще лучше, чем у 1А». Низведение на втором уроке было не в 1А. В каком классе валяли дурака на последнем уроке?

Если каждой девочке дать по одной шоколадке, а каждому мальчику по две, то шоколадок хватит. А если каждому мальчику дать по одной шоколадке, а каждой девочке по две, то их не хватит. А если девочкам не давать вообще, то хватит ли каждому мальчику по три шоколадки?

Мачеха приказала Золушке сшить квадратное одеяло из пяти прямоугольных кусков так, чтобы длины сторон всех кусков были попарно различны и составляли целое число дюймов. Сможет ли Золушка выполнить задание без помощи феи-крестной?

Страница: 1 2 >> [Всего задач: 9]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Покажите, как разрезать квадрат размером 5×5 клеток на «уголки» шириной в одну клетку так, чтобы все «уголки» состояли из разного количества клеток. (Длины «сторон» уголка могут быть как одинаковыми, так и различными.)

Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок).

Города A , B и C вместе с соединяющими их прямыми дорогами образуют треугольник. Известно, что прямой путь из A в B на 200 км короче объезда через C , а прямой путь из A в C на 300 км короче объезда через B . Найдите расстояние между городами B и C.

Каждый день баран учит одинаковое количество языков. К вечеру своего дня рождения он знал 1000 языков. В первый день того же месяца он знал к вечеру 820 языков, а в последний день этого месяца – 1100 языков. Когда у барана день рождения?

Темы: [ ]
[ ]
Решение

Конструктор состоит из плиток размерами 1 × 3 и 1 × 4. Из всех имеющихся плиток Федя сложил два прямоугольника размерами 2 × 6 и 7 × 8. Его брат Антон утащил по одной плитке из каждого сложенного прямоугольника. Сможет ли Федя из оставшихся плиток собрать прямоугольник размером 12 × 5?

Тема: [ ]
Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 188]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Среди любых десяти из шестидесяти ребят найдутся трое одноклассников. Докажите, что среди всех них найдутся 15 одноклассников.

Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.

Решение

1000 яблок разложены в несколько корзин. Можно убирать корзины и вынимать яблоки из корзин. Докажите, что можно добиться того, чтобы во всех корзинах стало поровну яблок и общее число оставшихся яблок было не меньше 100.

Тема: [ ]
Решение

В автобусе едут 20 пассажиров, и у каждого много монет по 10, 15 и 20 копеек. Каждый должен заплатить 5 копеек.
Могут ли они сделать это, использовав (в том числе и для обмена между собой) а) 24 монеты; б) 25 монет?

По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 392]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;
б) по 3 монеты;
в) по 4 монеты;
г) по 5 монет;
д) по 6 монет;
е) по 7 монет?
(Разрешается класть монеты одну на другую.)

Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток — прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

Темы: [ ]
[ ]
Решение

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

На доске записаны числа 1, 2 1 , 2², 2³, 2 4 , 2 5 . Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 973]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Пятеро молодых рабочих получили на всех зарплату — 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

В окружность вписан равнобедренный треугольник с основанием a и углом при основании . Кроме того, построена вторая окружность, касающаяся первой окружности и основания треугольника, причём точка касания является серединой основания. Найдите радиус второй окружности. Если решение не единственное, рассмотрите все случаи.

В выпуклом пятиугольнике ABCDE с единичными сторонами середины P , Q сторон AB , CD и середины S , T сторон BC , DE соединены отрезками PQ и ST . Пусть M и N – середины отрезков PQ и ST . Найдите длину отрезка MN .

Две окружности с центрами M и N , лежащими на стороне AB треугольника ABC , касаются друг друга и пересекают стороны AC и BC в точках A , P и B , Q соответственно. Причем AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC окружности, если известно, что отношение площади треугольника AQN к площади треугольника MPB равно 15 )/(5 ).

Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D . Докажите, что AD = BD .

Тема: [ ]
Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 21155]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Среди любых десяти из шестидесяти ребят найдутся трое одноклассников. Докажите, что среди всех них найдутся 15 одноклассников.

Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.

Решение

1000 яблок разложены в несколько корзин. Можно убирать корзины и вынимать яблоки из корзин. Докажите, что можно добиться того, чтобы во всех корзинах стало поровну яблок и общее число оставшихся яблок было не меньше 100.

Тема: [ ]
Решение

В автобусе едут 20 пассажиров, и у каждого много монет по 10, 15 и 20 копеек. Каждый должен заплатить 5 копеек.
Могут ли они сделать это, использовав (в том числе и для обмена между собой) а) 24 монеты; б) 25 монет?

По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 392]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;
б) по 3 монеты;
в) по 4 монеты;
г) по 5 монет;
д) по 6 монет;
е) по 7 монет?
(Разрешается класть монеты одну на другую.)

Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток — прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

Темы: [ ]
[ ]
Решение

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

На доске записаны числа 1, 2 1 , 2², 2³, 2 4 , 2 5 . Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 973]

Проект осуществляется при поддержке и .

Источник

В пять горшочков стоящих в ряд кролик налил три

Пятеро молодых рабочих получили на всех зарплату — 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?

Тема: [ ]
Решение

Обязательно ли среди двадцати пяти «медных» монет (т.е. монет достоинством 1, 2, 3, 5 коп.) найдётся семь монет одинакового достоинства?

Тема: [ ]
Решение

a) Докажите, что в любой футбольной команде есть два игрока, которые родились в один и тот же день недели.
b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день.

Тема: [ ]
Решение

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 4000]

Проект осуществляется при поддержке и .

Источник

Читайте также:  Можно ли кроликам сено из овса
Тема: [ ]